

#### **Product Information**

The Tissue Clearing Pro technique is designed for use with whole tissues. Tissue Clearing Pro Reagent 1 and Tissue Clearing Pro Reagent 2 clears tissues with minimum changes to morphology and without compromising the sensitivity of detection with almost any fluorophore. With the easy-to-use protocol, whole mouse brain (8 mm thickness) can be cleared in 24 hours, or a 1 mm section in 2 hours, without using any special instrument or equipment. The clearing workflow is compatible with most fluorophores including fluorescent proteins, which can be detected with typical fluorescent imaging instruments

such as wide-field, confocal, and light sheet microscopes, and high-content instruments. The Tissue Clearing Pro technique is strong enough to adequately clear tissue for 3D fluorescent imaging, but not so harsh as to disrupt tissue morphology. Minimum morphological changes such as shrinkage or contraction have been observed. For precious samples, the clearing can be reversed, and tissue can be processed for histology studies such as H&E staining.

| Table 1. Contents And Storage Of Tissue Clearing Pro |                                     |  |  |  |
|------------------------------------------------------|-------------------------------------|--|--|--|
| Contents                                             | Tissue Clearing Pro (Cat. No. 7389) |  |  |  |
| Tissue Clearing Pro Reagent 1                        | 30 mL                               |  |  |  |
| Tissue Clearing Pro Reagent 2                        | 30 mL                               |  |  |  |
| Tissue Clearing Pro Antibody Buffer                  | 30 mL                               |  |  |  |
| Tissue Clearing Pro Blocking Buffer                  | 30 mL                               |  |  |  |
| Tissue Clearing Pro Antibody Penetration Buffer      | 30 mL                               |  |  |  |
| Tissue Clearing Pro Washing Buffer 10X               | 70 mL                               |  |  |  |
| Tissue Clearing Pro Tissue Permeabilization Buffer   | 30 mL                               |  |  |  |

- Tissue Clearing Pro Reagent 1 and 2 should be stored well-sealed at room temperature in a dry environment. Do not freeze. Please refer to Certificate of Analysis / Product Datasheet for storage and stability information.
- Tissue Clearing Pro buffers should be stored in a refrigerator (2-8°C) upon receipt. Please refer to Certificate of Analysis / Product Datasheet for storage and stability information.

| Product                                        | Notes                                                          | Storage                                         |  |  |
|------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------|--|--|
| Tissue Clearing Pro Reagent 1                  | Clearing and imaging reagent with a refractive index of 1.50   | Store at room temperature in a dry environment. |  |  |
| Tissue Clearing Pro Reagent 2                  | Clearing and imaging reagent with a refractive index of 1.53   | Do not freeze.                                  |  |  |
| Tissue Clearing Pro Antibody<br>Buffer         | PBS with 0.2% Tween™ 20, heparin, 3% donkey serum, and 5% DMSO | Store at 2-8°C                                  |  |  |
| Tissue Clearing Pro Blocking<br>Buffer         | PBS with 0.2% Tween™ 20, 6% donkey serum, and 10% DMSO.        |                                                 |  |  |
| Tissue Clearing Pro Penetration<br>Buffer      | PBS with 0.2% Tween™ 20, 0.3 M glycine, and 20% DMSO           |                                                 |  |  |
| Tissue Clearing Pro Washing<br>Buffer 10X      | 10X PBS with 2% Tween™ 20 and 100 μg/mL heparin.               |                                                 |  |  |
| Tissue Clearing Pro<br>Permeabilization Buffer |                                                                |                                                 |  |  |

For easier-to-clear tissues like brain, lung, intestine, muscle, and skin with less than 250  $\mu$ m thickness, treatment with the Tissue Clearing Pro Reagent 1 is sufficient for 3D imaging. However, tissues thicker than 250  $\mu$ m, or difficult-to-clear tissues such as kidney, liver, heart, and placenta, require an initial treatment with the Tissue Clearing Pro

Reagent 1, followed by treatment with Tissue Clearing Pro Reagent 2.

For first-time users, we recommend Tissue Clearing Pro for whole tissues, which contains all reagents required for the workflows described here.

## **Required Materials Not Supplied**

| Item                                                                                |  |  |
|-------------------------------------------------------------------------------------|--|--|
| Slides, coverslips, containers                                                      |  |  |
| Primary or secondary antibodies                                                     |  |  |
| PBS (phosphate buffered saline), pH 7.4 (without calcium, magnesium, or phenol red) |  |  |
| Water-free Ethanol (for samples containing fluorescent proteins)                    |  |  |
| Methanol (for samples without fluorescent proteins)                                 |  |  |
| Hydrogen peroxide solution                                                          |  |  |
| DMSO, Anhydrous                                                                     |  |  |
| 4% formaldehyde, methanol-free                                                      |  |  |
| PBS with 0.05% Sodium azide (Caution! Sodium azide is extremely toxic!)             |  |  |

# **Before You Begin**

#### **Procedural Guidelines**

- For tissues up to 250 µm thickness, treatment with Tissue Clearing Pro Reagent 1 is sufficient for clearing, but clearing can be enhanced by incubating the sample with Tissue Clearing Pro Reagent 2.
- All three clearing reagents, Tissue Clearing Pro
  Reagent 1, Tissue Clearing Pro Reagent 2, and Tissue
  Clearing Pro-Organoid can also be used as imaging
  solutions during imaging on a fluorescent imaging
  instrument.
- Best results are obtained with tissues that have been fixed by perfusion with 4% paraformaldehyde. Immersion fixation in 10% neutral buffered formalin is also acceptable, but tissues larger than 6 mm (e.g. whole brains) should be perfused with ice-cold 4% paraformaldehyde.
- If perfusion is not possible, slice several channels into the tissue ("bread-loafing") to allow penetration of the fixative to avoid autolysis from incomplete fixation of center portion of tissues. Place the tissues in a container containing fixative at a volume that is approximately 10X the volume of tissue. Ensure that the tissue is completely submerged in solution and at 4°C overnight, followed by incubation for 1 hour at room temperature. Finally, if long-term (>1 week) storage is required, transfer tissues to PBS with 0.05%

- sodium azide as a preservative. Otherwise, transfer tissues to PBS and proceed with further processing.
- We recommend large tissues (e.g. whole mouse or rat brains) to be perfusion fixed, as immersion fixation of large tissues can lead to incomplete fixation, autolysis, and necrosis.
- Except where otherwise stated, perform all steps in the procedure at room temperature (20°C) with gentle agitation. If autofluorescence is a significant problem for your tissue, it may be reduced by conducting all steps at 4°C and using 100% dry ethanol instead of methanol.
- For liver, kidney, and lymphatic tissues, you may need to extend incubation times by 30-50%, depending on degree of fixation.
- Use 100% water-free ethanol for all steps involving ethanol. Reagent alcohol is a suitable choice (Fisher cat #HC-600- 1GAL), containing 90% ethanol, 5% isopropanol and 5% methanol.
- Tissue Clearing Pro Reagent 2 is not compatible with polystyrene. Use glass or polypropylene containers and tubes instead.

For research use only. Not for use in diagnostic procedures

2

#### Prepare The Reagents

- **1.1** Tissue Clearing Pro 10X Washing Buffer is provided at 10X concentration. Dilute the Tissue Clearing Pro 10X Washing Buffer to 1X with DI H<sub>2</sub>0, pH 7.4 before use.
- **1.2** For samples containing fluorescent proteins, prepare 30% and 50% ethanol solutions by diluting a higher concentration ethanol solution in PBS, pH 7.4. Prepare 70% and 90% ethanol solutions by diluting a higher concentration ethanol solution in deionized water. For best results, ensure that the 100% ethanol used in the last step of dehydration is completely dehydrated.
- **1.3** For samples without fluorescent proteins, prepare 50% methanol solution by diluting a higher concentration
- methanol solution in PBS, pH 7.4. Prepare 70% and 90% methanol solution by diluting a higher concentration methanol solution in deionized  $\rm H_2O$ . For best results, ensure that the 100% methanol used in the last step of dehydration is free of water. Methanol, if not sealed properly, will absorb water directly from the air, so be sure to use fresh methanol, stored with a tight seal.
- **1.4** For samples with extensive pigmentation (liver, kidney), prepare ice-cold  $5\% \ H_2O_2$  in 20% DMSO/methanol (1 part 30%  $H_2O_2$ , 1 part 100% DMSO, 4 parts 100% methanol). Note that bleaching with this solution is not compatible with fluorescent protein staining

#### **Protocol For Fluorescent Protein Labeled Tissue**

The following protocol describes a general procedure for clearing a variety of tissues ranging in size from whole organs to thin sections of tissues. The procedure is effective at clearing unfixed tissues, tissues fixed with a variety of fixatives, as well as tissues that have been stored in formalin for years. Refer to Table 3 for the suggested incubation times, volumes, and considerations for your particular tissue of interest.

| Table 3. Incubation Times And Reagent Volumes Required For Clearing Fluorescent Protein Or Fixable |
|----------------------------------------------------------------------------------------------------|
| Fluorophore-Labeled Tissues                                                                        |

| Thickness                             | Ethanol<br>Dehydration | Volume Of Ethanol<br>For Each Step | Incubation In Tissue<br>Clearing Pro Clearing<br>Reagents [1] | Volume Of Tissue<br>Clearing Pro Clearing<br>Reagents [2] |  |  |
|---------------------------------------|------------------------|------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|--|--|
| 8 mm (e.g. whole mouse<br>brain)      | 4 hours                | 25 mL                              | 48 hours                                                      | 10 mL                                                     |  |  |
| 4 mm (e.g. mouse brain<br>hemisphere) | 2 hours                | 13 mL                              | 36 hours                                                      | 7 mL                                                      |  |  |
| 2 mm                                  | 90 minutes             | 8 mL                               | 12 hours                                                      | 5 mL                                                      |  |  |
| 1 mm                                  | 40 minutes             | 4 mL                               | 4 hours                                                       | 3 mL                                                      |  |  |
| 500 μm                                | 16 minutes             | 3 mL                               | 30 minutes                                                    | 2 mL                                                      |  |  |
| ≤ 250 µm                              | 8 minutes              | 2 mL                               | 10 minutes                                                    | 1 mL                                                      |  |  |
| 1                                     |                        |                                    |                                                               |                                                           |  |  |

- [1] For liver, kidney, and lymphatic tissues, extend incubation time by 30-50%, depending on degree of fixation.
- [2] Tissue Clearing Pro Reagent 1 only, or Tissue Clearing Pro Reagent 1 and Tissue Clearing Pro Reagent 2, depending on the tissue thickness.

Except where otherwise stated, perform all steps in the procedure at (4°C) with gentle agitation.

- **2.1** Obtain tissues of interest. See "Procedural guidelines" on page 3 for guidelines on fixation.
- **2.2** Wash tissues twice in PBS, pH 7.4 (without calcium, magnesium, or phenol red) for at least 1 hour.

**STOPPING POINT.** (Optional) You can store the tissues at 4°C in the dark for up to 3 days without detrimental effects.

**2.3** Dehydrate the tissues with increasing concentrations of ethanol at 4°C. See Table 3 for required volumes

and incubation times. Using an excess volume in the dehydration steps ensures proper clearing.

- **2.3.1** Treat tissues with 30% ethanol in PBS with gentle shaking.
- **2.3.2** Treat tissues with 50% ethanol in PBS with gentle shaking
- **2.3.3** Treat tissues with 70% ethanol in deionized water with gentle shaking.
- **2.3.4** Treat tissues with 90% ethanol in deionized water with gentle shaking.

**2.3.5** Treat tissues with 100% dry ethanol with gentle shaking.

**STOPPING POINT.** (Optional) You can store the tissues at  $4^{\circ}$ C in the dark for up to 5 days without detrimental effects.

- **2.4** Remove the tissues from ethanol. Ensure that all excess ethanol is removed by dabbing tissue with a Kimwipe, laboratory tissue, or a paper towel.
- **2.5** For tissues, add Tissue Clearing Pro Reagent 1 to completely cover the sample, then incubate at 4°C with gentle shaking.

**Note:** Required reagent volume and clearing time vary with tissue sample size (see Table 3, page 5). However, tissue clearing can be accelerated substantially at 37°C with gentle shaking without damage to tissue, at the compromise of increased autofluorescence in green and red channels. IMPORTANT! Incubation in Tissue Clearing Pro Reagent 2 (Step 2.7) requires the use of glass or polypropylene containers. Other plastic vessels are not compatible with the enhancer and will ruin the samples.

**2.6** Transfer larger or thicker tissues (>200  $\mu$ m) to Tissue Clearing Pro Reagent 2 to finish the clearing process at 4°C with gentle agitation.

**Note:** Larger tissue samples should be imaged in Tissue Clearing Pro Reagent 2.

**Note:** DAPI (Cat. No. 5748) gives much better results with cleared samples and is preferable to Hoechst 33342 (Cat. No 5117).

**STOPPING POINT.** You can seal and store the cleared samples at 4°C in the dark indefinitely without detrimental effects. Depending on the sample type and the fluorophore, mounted samples can be imaged weeks to months after mounting. You might need to re-stain with a nuclear stain depending on how long the sample has been stored for.

**2.7** Image the cleared samples using any fluorescent imaging analyzer such as widefield microscope, confocal, light sheet or single/multi-photon microscope, or high content instrument. You can image the samples in any appropriate container, such as mounted slides, light sheet microscope chambers, etc.

# **Protocol For Immunolabeling Tissues**

The following protocol describes a general procedure for immunolabeling and clearing a variety of tissues ranging in size from whole rat brains to 250 µm thick sections. Refer to Table 4 for the suggested incubation times and Table 5 for the required reagent volumes to immunolabel and clear your tissue of interest.

Except where otherwise stated, perform all steps in the procedure at room temperature (20°C) with gentle agitation.

**3.1** Obtain tissues of interest and fix them, if needed. See "Procedural guidelines" on page 3 for guidelines on fixation.

- **3.2** Wash tissues twice in PBS, pH 7.4 (without calcium, magnesium, or phenol red) for at least 1 hour.
- **3.3** (Optional for most tissues) Incubate tissues that are particularly difficult to clear due to the presence of pigments, durable extracellular matrix (e.g. collagenous tissues), or blood (e.g. liver tissue, whole kidney, over-fixed human tissues) in Tissue Clearing Pro Permeabilization Buffer overnight with gentle shaking before proceeding with permeabilization.

| Table 4. Suggested Incubation Times For Immunolabeling And Clearing Tissues |                                     |                                  |             |                           |                                            |                                                                               |
|-----------------------------------------------------------------------------|-------------------------------------|----------------------------------|-------------|---------------------------|--------------------------------------------|-------------------------------------------------------------------------------|
| Thickness                                                                   | Permeabilization<br>And Dehydration | Penetration/<br>Permeabilization | Blocking[1] | Antibody<br>Incubation[1] | Washing<br>Steps                           | Incubation<br>In Tissue<br>Clearing Pro<br>Tissue Clearing<br>Reagents[1] [2] |
| 8 mm (e.g.<br>whole<br>mouse brain)                                         | 2 hours                             | 8 hours                          | 120 hours   | 240 hours                 | 4 hours +<br>overnight<br>for last<br>wash | 48 hours                                                                      |
| 4 mm (e.g.<br>mouse brain<br>hemisphere)                                    | 2 hour                              | 6 hours                          | 80 hours    | 80 hours                  | 2 hour +<br>overnight<br>for last          | 36 hours                                                                      |

5

| 2 mm     | 90 minutes | 4 hours    | 28 hours | 28 hours   | 90<br>minutes | 12 hours   |
|----------|------------|------------|----------|------------|---------------|------------|
| 1 mm     | 40 minutes | 2 hours    | 10 hours | 10 hours   | 1 hour        | 4 hours    |
| 500 μm   | 16 minutes | 1 hour     | 3 hours  | 3 hours    | 40<br>minutes | 30 minutes |
| ≤ 250 µm | 8 minutes  | 30 minutes | 1 hour   | 90 minutes | 20<br>minutes | 10 minutes |

- [1] For liver, kidney, and lymphatic tissues, extend incubation time by 30-50%, depending on degree of fixation.
- [2] Tissue Clearing Pro Reagent 1 only, or Tissue Clearing Pro Reagent 1 and Tissue Clearing Pro Reagent 2, depending on the tissue thickness.

| Table 5. Reagent Volumes Required For Immunolabeling And Clearing Tissues |                                  |                                                |                                      |          |  |
|---------------------------------------------------------------------------|----------------------------------|------------------------------------------------|--------------------------------------|----------|--|
| Thickness                                                                 | Permeabilization And Dehydration | Penetration /<br>Permeabilization /<br>Washing | Blocking /<br>Antibody<br>Incubation | Clearing |  |
| 8 mm (e.g. whole mouse brain)                                             | 25 mL                            | 20 mL                                          | 10 mL                                | 10 mL    |  |
| 4 mm (e.g. mouse brain hemisphere)                                        | 13 mL                            | 10 mL                                          | 5 mL                                 | 7 mL     |  |
| 2 mm                                                                      | 8 mL                             | 6 mL                                           | 3 mL                                 | 5 mL     |  |
| 1 mm                                                                      | 4 mL                             | 4 mL                                           | 2 mL                                 | 3 mL     |  |
| 500 μm                                                                    | 3 mL                             | 2 mL                                           | 1 mL                                 | 2 mL     |  |
| ≤ 250 µm                                                                  | 2 mL                             | 1.6 mL                                         | 0.8 mL                               | 1 mL     |  |

**Note:** Tissue Clearing Pro Permeabilization Buffer may quench signal from fluorescent proteins. If immunolabeling tissues containing fluorescent protein, you may want to consider using an antibody for the fluorescent protein used in your tissues.

- **3.4** Permeabilize tissues by washing them in increasing concentrations of methanol (samples without fluorescent protein) or ethanol (samples with fluorescent protein) at 4°C with gentle agitation. See Tables 4 and 5 for required volumes and incubation times.
- **a.** Samples without fluorescent protein: Wash tissues twice in PBS, once in 50% methanol in PBS, 80% methanol in deionized water, and finally in 100% dry methanol.
- **b.** Samples with fluorescent protein: Wash tissues twice in PBS, once in 50% ethanol in PBS, 80% ethanol in deionized water, and finally in 100% dry ethanol (conduct at 4°C).
- **STOPPING POINT.** (Optional) You can store the tissues in methanol (samples without fluorescent protein) or ethanol (samples with fluorescent protein) at 4°C for up to 2 weeks without detrimental effects.
- **3.5** (Optional) Bleach tissues containing substantial quantities of blood or pigment (such as non-perfused heart, lung, kidney, or liver tissue) by submerging them in ice-cold 5% H<sub>2</sub>O<sub>2</sub> in 20% DMSO/methanol (1 part 30% H<sub>2</sub>O<sub>2</sub>, 1 part 100% DMSO, 4 parts 100% methanol) and incubating at 4°C overnight. This step significantly reduces background fluorescence caused by hemoglobin.

IMPORTANT! Bleaching of samples with 5%  $\rm H_2O_2$  in 20% DMSO and methanol is not compatible with imaging fluorescent proteins.

- **3.6** Wash samples before proceeding with further staining:
- **a.** Samples without fluorescent protein: Wash the tissues in 20% DMSO/methanol, in 80% methanol in deionized water, in 50% methanol in PBS, in 100% PBS, and finally in PBS with 0.2% Triton™ X-100.
- **b.** Samples with fluorescent protein: Wash the tissues in 20% DMSO/ethanol, in 80% ethanol in deionized water, in 50% ethanol in PBS, in 100% PBS, and finally in PBS with 0.2% Triton™ X-100 (conduct at 4°C).

**STOPPING POINT.** (Optional) You can store the tissues at  $4^{\circ}$ C in the dark for up to 3 days without detrimental effects.

- **3.7** Incubate the samples in Tissue Clearing Pro Penetration Buffer with gentle shaking.
- **3.8** Block the samples in Tissue Clearing Pro Blocking Buffer with gentle shaking at 37°C.

**STOPPING POINT.** (Optional) You can store the tissues at 4°C for up to 1 month without detrimental effects.

**3.9** Transfer the samples to primary antibody dilutions prepared in Tissue Clearing Pro Antibody Buffer and incubate at 37°C with gentle shaking.

**Note:** For most broadly expressing epitopes, a dilution of 1:50 to 1:500 is typically required, but antibody

concentration should be optimized for tissues according to the guidelines described on page 13.

**STOPPING POINT.** (Optional) You can store the tissues at 4°C for up to 2 weeks without detrimental effects.

**3.10** Wash the samples 5 times in Tissue Clearing Pro Washing Buffer (diluted to 1X in DI  $H_2O$ ; see Step 1.1, page 4) with gentle shaking.

**STOPPING POINT.** (Optional) You can store the tissues at  $4^{\circ}$ C for up to 3 days without detrimental effects.

**3.11** If using secondary antibody detection, incubate the samples in secondary antibody dilutions (1:50 to 1:500, depending on the dilution of the primary antibody) in Tissue Clearing Pro Antibody Buffer at 37°C with gentle shaking.

**STOPPING POINT.** (Optional) You can store the tissues at 4°C for up to 2 weeks without detrimental effects.

- **3.12** (Optional) Add nuclear stain (e.g. DAPI) to a dilution of 1:1000 to 1:5000 (depending on the stain). You can perform this step concurrently with antibody labeling steps, or separately in Tissue Clearing Pro Wash Buffer. DAPI (Cat. No. 5748) should be used as a nuclear stain instead of Hoechst (Cat. No. 5117)
- **3.13** Wash the samples 10 times in Tissue Clearing Pro Wash Buffer, 5-90 minutes each time, at 37°C, with gentle shaking. You can keep the samples in Tissue Clearing Pro Wash Buffer indefinitely before proceeding with the subsequent steps.

**Note:** Samples which have not been stained with antibodies normally require only 3 washes. If excess background staining still occurs, increase the number of washes.

**STOPPING POINT.** (Optional) You can store the tissues at  $4^{\circ}$ C in the dark for up to 3 days without detrimental effects.

- **3.14** Dehydrate the tissues with increasing concentrations of methanol (samples without fluorescent protein) or ethanol (samples with fluorescent protein) at 4°C with gentle shaking. See Tables 4 and 5 (page 7) for required volumes and incubation times. Using an excess volume in the dehydration steps ensures proper clearing.
- **a.** Samples without fluorescent protein: Treat tissues with 50% methanol in PBS, then with 80% methanol in deionized water, and finally in 100% methanol with gentle shaking.

**b.** Samples with fluorescent protein: Treat tissues with 50% ethanol in PBS, then with 80% ethanol in deionized water, and finally in 100% ethanol with gentle shaking (conduct at 4°C).

**STOPPING POINT.** (Optional) You can store the tissues at 4°C for up to 3 days without detrimental effects.

- **3.15** Remove the tissues from methanol or ethanol. Ensure that all excess methanol or ethanol is absorbed with laboratory tissue or a paper towel and removed from the sample.
- **3.16** Add Tissue Clearing Pro Reagent 1 to completely cover the sample with gentle shaking (conduct at 4°C for samples with fluorescent protein).

**Note:** Required reagent volume and clearing time vary with tissue sample size (see Table 3). However, tissue clearing can be accelerated substantially at 37°C with gentle shaking without damage to tissue, at the compromise of increased autofluorescence.

**IMPORTANT!** Incubation in Tissue Clearing Pro Reagent 2 (Step 3.17) requires the use of glass or polypropylene containers. Other plastic vessels are not compatible with the enhancer and will ruin the samples.

**3.17** Transfer larger or thicker tissues (>200  $\mu$ m) to Tissue Clearing Pro Reagent 2 to finish the clearing process with gentle agitation, then proceed to Step 3.19. Otherwise, directly proceed to Step 3.18 (conduct at 4°C for samples with fluorescent protein)

**Note:** Larger tissue samples should be imaged in Tissue Clearing Pro Reagent 2.

**STOPPING POINT.** You can seal and store the cleared samples at 4°C in the dark indefinitely without detrimental effects. Depending on the sample type and the fluorophore, mounted samples can be imaged weeks to months after mounting.

**3.18** Image the cleared samples using confocal, light sheet, or single or multi-photon microscopy.

**Note:** Samples should be mounted for imaging in Tissue Clearing Pro Reagent 1 or Tissue Clearing Pro Reagent 2.

# **Appendix A: Troubleshooting**

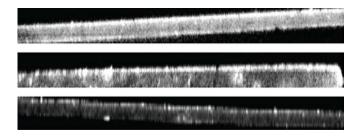
| Observation                                                                                        | Possible Cause                                                                                                                     | Recommended Action                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                    | Antibody concentration too<br>high: ring of intense staining<br>near the surface, drops off<br>significantly after that            | Reduce antibody concentration. If the signal is too weak, use a lower antibody concentration for half of the time, then reincubate with antibodies at a higher concentration.                                                                                                                                                                                                                                                                                               |
|                                                                                                    | Antibody concentration too low: signal drops off in the middle of the tissue                                                       | Increase antibody concentration                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Cannot image past<br>500-1000 µm. Labeling<br>appears uneven and drops off                         | Using LED illumination on confocal microscope                                                                                      | Use laser based illumination system                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| significantly at this depth.                                                                       | Optical attenuation due to absorption of photons by the upper tissue layers "shadows" the tissue below, even with perfect staining | <ul> <li>Increase laser power and gain with increasing depth.         Some microscopes can automate laser power and gain corrections. Caution! Higher laser power increases the rate of photobleaching.     </li> <li>Ensure that the samples contain no air bubbles.</li> <li>Compare intensity loss to nuclear stain intensity. Because nuclear stain diffuses very fast into tissues, you can use this signal to correct for signal loss in image processing.</li> </ul> |
| There is an intense band of labeled tissue at the surface, then a significant drop-off afterwards. | Antibody concentration too high                                                                                                    | Reduce antibody concentration by increasing the dilution factor.                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                    | Plastic incompatibility                                                                                                            | Tissue Clearing Pro Reagent 2 degrades polystyrene. Check to see if plastic looks deformed and/or melted.                                                                                                                                                                                                                                                                                                                                                                   |
| Tissues did not clear                                                                              |                                                                                                                                    | Use polypropylene and glass in your workflow, where possible. Plastic leaching into your sample can affect the clearing ability of Tissue Clearing Pro reagents.                                                                                                                                                                                                                                                                                                            |
|                                                                                                    | Incomplete dehydration/                                                                                                            | Ensure that you are using fresh, water-free ethanol or methanol for dehydration. If not stored properly, methanol/ethanol will absorb water from the air. Methanol or ethanol that contains water will not remove all water from the tissue, resulting in cloudiness.  Ensure that the sample vessel is sealed properly. Tissue Clearing                                                                                                                                    |
|                                                                                                    | clearing                                                                                                                           | Pro Reagent 2 is hygroscopic and will draw water.  Ensure that you are using sufficient volume of Tissue Clearing Pro Reagent 1, Tissue Clearing Pro Reagent 2, or Tissue Clearing Pro-Organoid for your tissue size. Using insufficient volume of Tissue Clearing Pro reagents can cause inadequate clearing.                                                                                                                                                              |
|                                                                                                    | Sample containing fluorescent protein is dehydrated using methanol                                                                 | To visualize fluorescent proteins, samples must be dehydrated using ethanol at 4°C instead of methanol.                                                                                                                                                                                                                                                                                                                                                                     |
| Fluorescent protein is quenched                                                                    | Sample is bleached                                                                                                                 | <ul> <li>Keep cleared samples in the dark and cover them with aluminum foil, because fluorescent proteins photobleach rapidly when exposed to ambient light.</li> <li>Do not treat fluorescent protein-labeled samples with H<sub>2</sub>O<sub>2</sub>. This step oxidizes fluorescent proteins, resulting in loss of signal.</li> <li>Do not treat fluorescent protein-labeled samples with permeabilization buffers.</li> </ul>                                           |
|                                                                                                    | Background fluorescence too high                                                                                                   | Shift all steps in the protocol to 4°C and increase their duration by 50%.                                                                                                                                                                                                                                                                                                                                                                                                  |
| Antibody did not label the tissue                                                                  | Antibody is not compatible with 3D immunolabeling                                                                                  | <ul> <li>Validate the specificity of your antibody on small tissue sections before proceeding to larger tissues. Contact Technical Support, if you have any questions about your specific antibody.</li> <li>Only use antibodies that have been validated for use in IHC. If IHC validated antibody is not available, then IF/ ICC validated antibody might also work.</li> </ul>                                                                                           |

| Center of tissue looks dark    | Antibody concentration too low | Increase the antibody concentration. Explore a range of antibody concentrations on a small section of the tissue before scaling to large tissues.                                                                                    |
|--------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Center of tissue looks dark Op |                                | Optical attenuation leads to diminished signal at increasing depths depending on several factors, such as concentration of label bound in upper layers of the tissue, level of autofluorescence, type of objective, and laser power. |
|                                | Optical attenuation            | Modify laser power and gain according to tissue depth to<br>account for optical attenuation. This can be automated in<br>systems such as the Leica SP5 and SP8.                                                                      |
|                                |                                | Histogram matching during image processing can account for optical attenuation at the cost of increased noise at greater depths.                                                                                                     |

# **Appendix B: Guidelines For Validating Antibodies And Optimizing Antibody Concentration**

If you are using an antibody for the first time, we recommend that you validate the anti-body and optimize its concentration. Antibody concentration required for the workflow can be different for thicker tissues than for thinner sections. Thicker sections require longer incubations and make workflow times longer. Therefore, we recommend that you validate the antibody of interest using thin tissue sections first.

- Fix the tissue sections with 4% paraformaldehyde overnight at 4°C. Do not over-fix the tissues.
- For antibody validation and optimization, consider using tissue sections 100-250 µm thick. You will need approximately 5 tissue sections to complete the validation and optimization.
- Label tissue sections using various concentrations of the primary antibody, ranging from 1:50 to 1:500 (e.g. 1:50, 1:100, 1:200, 1:300, 1:500), diluted in Tissue Clearing Pro Antibody Buffer.
- Usually, a 1:100 dilution of the secondary antibody works well. However, you might have to optimize the secondary antibody concentration if you observe low signal or high background.
- You can validate antibody staining using a typical fluorescent microscope. Prepare a slide of the cleared tissue and examine for specificity of signal.
- To evaluate the evenness of staining, image the tissues using a confocal microscope. Obtain a z-stack image


spanning the entire thickness of the tissue section using two color channels: the channel corresponding to the fluorescent conjugate for antibody staining, and the channel used for nuclear stain. Because nuclear stains penetrate tissues rapidly and homogenously, the nuclear stain channel serves as a control for optical attenuation.

 Examine the z-stacks in ImageJ program (or other image processing software). Observe the XZ and YZ planes by viewing "Orthogonal Views" and examine the evenness of staining.

**Note:** ImageJ is a free, open-sourced, public domain image processing and analysis program available from NIH at https://imagej.nih.gov/ij/index.html. Fiji is a release of ImageJ which comes pre-installed with many useful plugins, available at https://imagej.net/Fiji/Downloads

- If the staining is even, you should see relatively consistent intensity (with respect to nuclear stain) across the tissue (see Figure 1, below). Some dimming in the inner layers is expected, but signal should be visible across tissue.
- If the concentration of the immunolabel is too high, you will see a bright ring of staining at the surface layers, with uneven staining at a lower intensity deeper into the tissue.
- If the concentration of the immunolabel is too low, you will see slight staining at the surface layer, a dark interior, and uneven spots of stain

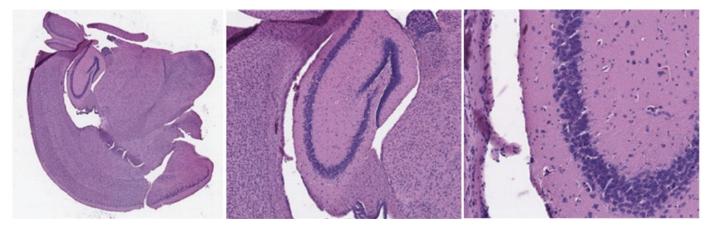
9



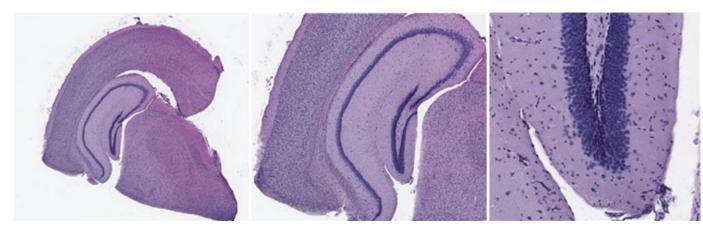
Optimum antibody concentration

Antibody concentration too high

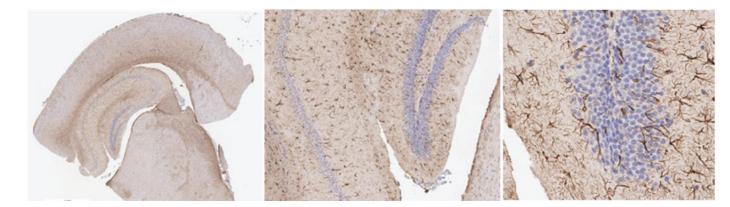
Antibody concentration too low


**Figure 1.** Evaluating the evenness of staining. Tissue sections were imaged using a confocal microscope and a z-stack spanning the entire thickness of the tissue was obtained. The XZ plane was examined for the evenness of staining.

# **Appendix C: Reverse Tissue Clearing**


The Tissue Clearing Pro tissue clearing process is non-destructive and reversible, allowing traditional 2D histology to be conducted after 3D imaging. Because of the reversible nature of this approach, the Tissue Clearing Pro tissue clearing method can be integrated into the many bio-imaging processes without disrupting the other assays or histological processing or of traditional workflows.

• Place cleared tissue directly into a large volume (at least 10-20 times tissue volume) of absolute or


- histological grade ethanol or methanol. Leave tissue at room temperature until opacity has been restored.
- Larger and more vascular tissues (e.g. whole kidney) may require 2-3 washes of alcohol over the course of several hours.
- After reversal, samples can be processed directly for paraffin-embedding histological preparations.



**Figure 2A.** Untreated mouse brain tissue section was formalin-fixed and paraffin-embedded, then stained with H&E, depicting the hippocampus.



**Figure 2B.** Mouse brain tissue was cleared using the Tissue Clearing Pro technique. Cleared tissue was then reversed, embedded in paraffin, sectioned, and stained with H&E, depicting hippocampus. Tissue Clearing Pro workflow does not appreciably affect tissue histology.



**Figure 2C.** Mouse brain tissue was cleared using the Tissue Clearing Pro technique. Cleared tissue was then reversed, embedded in paraffin, sectioned, and immunostained for GFP, labeling astrocytes. The Tissue Clearing Pro tissue clearing workflow does not affect antigenicity of tissues.

Tissue Clearing Pro reagents were developed with Visikol Inc, who developed the Visikol® HISTO™ tissue clearing technology.

# Where Science Intersects Innovation®

**Bio-Techne®** | R&D Systems<sup>™</sup> Novus Biologicals<sup>™</sup> Tocris Bioscience<sup>™</sup> ProteinSimple<sup>™</sup> ACD<sup>™</sup> ExosomeDx<sup>™</sup> Asuragen<sup>®</sup>

#### **Contact Us**

Global info@bio-techne.com bio-techne.com/find-us/distributors
North America TEL 800 343 7475
Europe | Middle East | Africa TEL +44 (0)1235 529449
China info.cn@bio-techne.com TEL +86 (21) 52380373

For research use or manufacturing purposes only. Trademarks and registered trademarks are the property of their respective owners.

