HiScript IV 1st Strand cDNA Synthesis Kit (+gDNA wiper)

R412

Version 24.1

Product Description

HiScript IV 1st Strand cDNA Synthesis Kit (+gDNA wiper) is the fourth generation of the HiScript series for synthesizing first strand cDNA using Total RNA or Poly A⁺ RNA as templates. Compared to previous versions, the HiScript IV 1st Strand cDNA Synthesis Kit (+gDNA wiper) further enhances reverse transcription efficiency, including stronger extension ability, faster reaction speed and higher tolerance to inhibitors, especially suitable for downstream qPCR quantification and long fragment cDNA amplification. This product premixes HiScript IV RTase, RNase inhibitor, dNTP Mix, etc., and only appropriate reverse transcription primers need to be added according to downstream experiments. The kit provides a genomic DNA elimination module, where the 5 × gDNA wiper Mix in the kit can quickly remove genomic DNA contamination under conditions of 42°C for 2 min, ensuring reliable and authentic experimental data.

Components

Components	R412-01 50 rxns (20 µl/rxn)	R412-02 100 rxns (20 µl/rxn)
RNase-free ddH ₂ O	1 ml	1 ml
5 × gDNA wiper Mix	100 μΙ	200 μΙ
4 × HiScript IV RT SuperMix*	250 μΙ	500 μl
Oligo (dT) ₂₀ VN	50 μl	100 µl
Random Primers	100 μΙ	200 μΙ
4 × No RT Control Mix	25 μl	50 μl

^{*} It contains dNTP Mix and RNase inhibitor.

Storage

Store at -30 ~ -15°C and transport at ≤0°C.

Applications

It is applicable for reverse transcription reactions of animal, plant and microbial RNA.

Notes

For research use only. Not for use in diagnostic procedures.

♦ Prevent RNase contamination

Please keep the experiment area clean; Wear disposable gloves and masks; Use of RNase-free consumables, such as centrifuge tubes and pipette tips.

♦ Primer selection

For PCR

- For eukaryotic RNA templates, use Oligo (dT)₂₀VN primer to obtain the highest yield of full-length cDNA by pairing with 3' end poly(A) tail of eukaryotic mRNA.
- Gene Specific Primers (GSP) has the highest specificity. If GSP fails in the 1st strand cDNA synthesis, Oligo (dT)₂₀VN or Random hexamers can be used for reverse transcription.
- Random hexamers have the lowest specificity. All RNA, including mRNA, rRNA and tRNA can be used as the template of Random
 hexamers. Random hexamers can be used as primers, when Oligo (dT)₂₀VN or GSP can not effectively guide cDNA synthesis for the
 target region has complex secondary structure and high GC content, or the template is prokaryotic origin.

For qPCR

- Mixing Oligo (dT)₂₀VN with Random Primers at the indicated ratios results in the same efficiency of cDNA synthesis in all regions of the mRNA, which contributes to the authenticity and reproducibility of the quantitative results.
- The Oligo (dT)₂₀VN and Random Primers provided in this kit have been specifically optimized. Use of reverse transcription primers from other sources may result in decreased reverse transcription efficiency.
- Reverse transcription can be performed directly without a genome elimination step, and the empty volume can be made up with RNase-free ddH₂O.

Experiment Process

♦ Subsequent experiment is PCR

1. RNA Denaturation

RNase-free ddH₂O	to 8 µl	
Total RNA	10 pg - 5 µg	
or Poly A⁺ RNA	10 pg - 500 ng	

Incubate at 65°C for 5 min and then chill on ice immediately for 2 min.

- ▲ The denaturation step helps to open the secondary structures to improve the first strand cDNA yield. For cDNA fragment longer than 3 kb, please do not ignore the denaturation step.
- ▲ Intact RNA is a prerequisite for the synthesis of long fragment cDNAs. If RNA integrity cannot be guaranteed, it is recommended to increase the amount of RNA input to increase the number of intact RNA copies. This can be increased to a maximum of 5 µg.

2. gDNA Elimination

μl	
μl	
μl	
μl	
μl	
μl	
5 r	min

^{*} This reagent can synthesize 15 kb cDNA within 5 min. If more cDNA products are required, the reaction time can be extended to 30 min.

The product can be used for PCR immediately or be stored at -20°C for 6 months. It is recommended to store in aliquots at -70°C for long term storage. cDNA should avoid repeated freezing and thawing.

5 sec

♦ Subsequent experiment is qPCR

1. gDNA Elimination

85°C

RNase-free ddH₂O	to 10 µl	
5 × gDNA wiper Mix	2 μΙ	
Total RNA	10 рд - 1 µд	
or Poly A⁺ RNA	10 pg - 100 ng	

Gently pipette up and down several times to mix thoroughly. 42°C 2 min.

2. Preparation of reaction solution for 1st strand cDNA synthesis

Mixture of Step 1	10 µl
4 × HiScript IV RT SuperMix	5 μΙ
Oligo (dT) ₂₀ VN	1 µl 📕
Random Primers	2 µl
RNase-free ddH₂O	2 μl

Gently pipette up and down several times to mix thoroughly.

3. Reaction Program

37°C*	15 min
85°C	5 sec

^{*} For templates with complex secondary structure or high GC content, the temperature can be increased to 50°C, which will benefit the yield.

The product can be used for qPCR immediately or be stored at -20°C for 6 months. It is recommended to store in aliquots at -70°C for long term storage. cDNA should avoid repeated freezing and thawing.

♦ No RT Control (optional)

No RT Control refers to the reverse transcription negative control reaction without the addition of reverse transcriptase, used to test for the presence of genomic DNA residues and genome elimination in the RNA template.

Mixture without gDNA*	10 μΙ	
4 × No RT Control Mix	5 μΙ	
RNase-free ddH₂O	5 µl	

Gently pipette up and down several times to mix thoroughly.

* If the subsequent experiment is PCR, this refers specifically to the mixture at the end of step 2 in the PCR experimental process; if the subsequent experiment is qPCR, this refers specifically to the mixture at the end of step 1 in the qPCR experimental process.

Reaction Program

37°C/50°C*	15 min
85°C	5 sec

^{*} Select the appropriate reaction temperature according to the application scenario: if the subsequent experiment is PCR, 50°C is recommended; if the subsequent experiment is qPCR, 37°C is recommended.

The product can be used for PCR/qPCR immediately or be stored at -20°C.

^{*} Alternatively, GSP (2 pmol) can be used for reverse transcription.